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TECHNICAL NOTE NO. 691

SOME ELEMENTARY PRINCIPLES OF SHELL STRESS aNALYSIS

WITH NOTES ON THE USE OF THE SEEAR CENTER

By Pawul Xuhn
SUMMARY T

The snalysis of wvarious types of shell under combined
bending and torsion is discussed. The calculation and the
use of the shear center are btouched upon as incidental T
problems. Twelve fully worked numerical examples are given
in an appendix. - - =

INTRODUCTIOR -

The literature on shell analysis is quite scattered
and some of it is not easily available., A definidte need
therefore exists for setting down in a reasorndbly compre-
hensive, put concise, manner the principles and the meth- ;
ods used in the various phases of shell analysis. The -
present vaper deals with the distridution of the stresses
chiefly the shearing stresses, over the cross sections of
contilever shells of constant cross section sub;ected to
combined bending and torsion. : e

The sudbject matter is far from being new; as the ap— -
vpended bidbliography indicates, the main principles tere
well established in 1931, Continued discussion in the
technical literature indicates, however, that the knowl-
edge of the subject is not so widely disseminated as it
neceds to be. I% is hopod that the manner of presentation
chosen for thls paper, in partigular the collection of
fully worked numorical oxamples, will help materially to \ -
achieve the ultimate goal, naomely, to provide all prac-
ticing crginecrs with a working knowledge of the subject.
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THE ANALYSIS OF SEHELLS

Basic Assumptions and Theories

Typical cases of the problem. to be treated are shown
in figure 1(a). As indicated by the figure, the shell
will be assumed to have a constant crogs section. It will
also be assumed, in general, that the nmaterial effective
in bending is disposed symmetrically about the horizontal
axis, The horizontal and the vertical axes will then be
principal axes, and the load will be assumed to act verti-
cally.

For purposes of stress analysis, the structures are
idealized in the usual manner. 4 certain effective width
of-skin ig added to esach.actval longitudinal or flange to
obtaln the cross—sectional ares effective in banding; thils
effective area 1is sssumed to be concentrated at the con~ o
troid. The skin itself is assumed to carry only shear.
Idealized sections arc ropresented as in figure 1(p).

Stregses caused by bending are obtained in filrst ap-
proximation by applying the engineering theory of bending
to the idealized crpss sections. This theory is based on
the assumptions that plane cross sections remain plane and
that Hooke's law applies. The theory leads to the formu-
las, for the normal stresses dus to bending,

and, for the shear stresses due to bending,
T = = ) 2a
=1 (22)

The derivation of these formulas can be found in any text-
bock on strength of materials.

It should be noted that, in the computation of the
static moments Q as well as of the moments of-inertia I,
consideration is given only to the material assumed to be
effective in bending.

In shell structures, it is often convenient to use,
not the ghear stress T, Dbut the shear force per inch
length of sheet, which will be designated by
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. g = T% S

and which will be céligd the "shear~force intensity” or,
. briefly, "shear intensity.' Formula (2a) then becemes
) PQ'
q m e~ .- 2
Q= . (2)

for open sections, where Db = t.

~(8) ‘ )
( ]
— Qe
. (b)

Figure 1; -




4 N.A.C.A. Technical Note- -No.,.891

In the case of a closed cross section, an equivalent for-
mula is obtained by considering the equlilidbrium of hori-
zontal forceg on a piece of the crosg section as shown in
figure 2

- PQ
iy = 9y = F (21p)

where § 18 now the static moment about the neutral axis
of the (effective) areas of the longitudinals lying be-
tween the skin panels r ‘and m where the shear intensi-
ties are measured.

/72/ N.4 L
4. o

Figure 2.

Shear stresses caused by torsion in a tude (fig- 3)
are obtained by the well-known formula

q:Tt:‘:I (5)

applicadle to thin-wall tubes. The angle of twist per
unit length of tube is given by

8 =

&

where the torsion constant ig defined by

hJ 4
|

4

f

J =

=¥
d'lm
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the symbol § denoting an integration around the entire

cireumference of the tube.

t_qd//@/
T

Figure 3.

In practical cases, the thickness is constant over large
parts of the circumference; the calculation of the line
integral therefore reduces to the addition of a few.frac-
tions of the type s/t. Substitute (3) into the formula
for angle of twist, and there is obtained

6 - -4 { ds

In the most general case, G and ¢q may be variable
along the circumference. Variation of & may be due %o
the use of different materials or to the formation of
diagonal-tension fields. Variation of ¢q may be caused
by attaching other torsion tubes to form multicellular
tubes. In the goneral case, tho formula for twlst becomes

1 e '
& = 2.A.f 1%t o - (48)

or g = = —— ds ’ ' (41v)
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where Gg 1is the effective shear stiffness. It should be
noted that longitudinals have no influence in the simple
torsion problemn.

The derivation of these torsion formulas, which may
be found in a numdber of standard textbooks, is based cn
the assumptions that the torques are apprlied as sghear
stresses distributed over the end faces according to the
theory and that the cross sections are free to follow the
tendeoncy to warp that exists in mosgt cases. In practical
structurces, it 1s usuvally not possible to comply with these
assumptions., The root section is usually built in more or
less completely, and the resulting restraint on the warp-
ing causes normal stresses, or bendlng siresses, and a ro-
distribution of shearing stresses (referonce 1). These
effects disappear quite rapidly with inecresasing distance
from the root and are usually negligible at a distance
from the root equal to, or greater than, the width of the
box. At the root, however, they may be quite appreclable.

The comménly accepted theory of shells in comblned
bending and torsion uses the simple theories of bending
and torsion, Corrections may therefore be necessary near
the root to account for the effects of restraint agaeinsy
warping just mentioned, which modify the simple theory of
torsion., Correciions may also be necessary to account for
the effects of shear deformation, which modify the simple
bending theory (reference 2).

An emphatic word of warning must be glven relating
to the use of the theories-of bending and torsion. These
theories give fairly reliaeble resultsg, if they are used
with judgment. The theory that the entlre cross section
acts as a unit naturally cannot. be expected to hold very
well 1f the Joints are not perfect or if the changesg 1in
dimonsiong and shave are too sudden. Nocgoe covers attached
with piano hinges and %trailing edgas with thelr acubte an-
glos at the tips are the most usual examples of structural
comnponents that cannot be expected to be fully effoctive
elther in bendine or in torsion.

Sign Conventions
External forees will be taken as positive when act=

ing upward. External torgues will be taken as posltive
when clockwise.
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Bow's notation will be usod to designate cells and
walls. The cells will be designated by letters from left
to right, starting with ‘'a.®

Shear stresses and forces in the walls of a call will
be taken as positive when going clockwlse around the cell.
If a wall belongs %0 two cells, the sign will be estabdb~

ligshed by assuming the wall %o belong %to the laft—hand
Oell- T

Line integrations will be performed in a clockwiss
direction. It should be noted that, in a wall belenging
to two cells, the sign of the shear must be reversed in
the right~hand cell when performing a lide integration,.
because the arrow of the positive shear direction as es-
tablished will oppose the sense of positive direction of
integration. In doudbtful cases, and preferadly in all
cases, free-body diagrams should be drawn indicating the
directions of all forces. The use of such diagrams will
materially reduce the chances of errors in sign and will
do away with the necessity of adhering rigidly to a set
convention of signs, provided that care is taken in writ-
ing the equations of equilibriun. . =

Note that, in cases where the sigﬁ conventioﬁ 1s-ad:
hered to rigidly, the basic eguation (3) must be written

N
@ =" 3%
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The Open Shell

Open shells (fig. 4) can be analyzed by applying

formulas (1) and (2).

After the shear forées in each

rart of the cross section have been found, the resultaent
of the internal shear forées can be found dy ordinary
statics, This resultant lies on a vertical line distant
e from tho open wall of $he shell. The point whore this
resultant intersects the horizontal axis ig caelled the

"ghear center.!

The external load P must pess throuch

the shear conter if—there is to be no torsion. The tor-
sional stiffnoss and strongth of~sn 6peéen section being

extromely small,

it is neoccssary to keep the extermnal

load vory closgse to the shear center. The knowledge of
the .shear conter ig therefore important for an opon soc~

tion.

je— ©

(a) (v)

In gurved sheets wilth a
congtant shear intensity g,
such as the webs of tho sec~
tiong shown in figures 4(b)
and 4(c), it is often conven-~
ient to replace the shear
stresses acting on the curved
cross section by a resultant
force. Integrating horizon-
tal components, vertical com-
ponents, and moments of the
elementary shear forces,
there is obtained (fig. 5)
the horizontal resultant
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B = 0
the vertleal resultant
¥ = qh (5)

and the torgque moment about any point

T = 2qh, | . (s)
which glves as the location of the resultant force
R =YV the distance >
24 -
= -2 A 7
° o . A7)

from the open face of the shell. In thése fornulas,
A, is the area included between the contour of the sheel

and the open face. It should be noted that the formulas
do not apply %o the entire sections slown in figures 4(d)
end 4(e) subjected to bending loads, because the shear ~
intensgity would not be constant. The formulas would ap-—
ply only to the part of the section included between the
two longitudinals next to the neutral axis, Coe— -—

Numerical examples 1 to B illustriite the analysis of
open sections.
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The Two-Flange, Single-Cell Box (D-Section)

The two~flange, single-cell section (fig. 6) may be
consldered as a combination of 2 beam and & torsion tube.
The beam can take bending moments only in a plane paral-

lel to the plane of

the two flanges, so that the load P

producing the bending must be parallel to this plans. The
torsion tube can take care of the torsion existing if the
load P is not applied at the shear center of the shell.

The-total shegr force acting on any cross section may
be resolved into two components (fig. 6(b)): +the shear
force SW acting in the plane web, and the shear force
Sy in the nose sheet acting at the shear center of the
nose sheet; these forces arc known as to location and di-
rection but unknown as to magnitude. There are available
two equations of static equilibrium to find them:

v
M

giving Sy

and, finally

Tw

The flange stressges
slmplifies to

= P - Sy + Sy = O

=~Pd+SNe=O_

g:.-
e

dn .
P =
2k

=P+SN=P<1+—-'§K';>

= N . p L (8)

S
w P l+ é (9)

|
{
|
|

are found by using equation (1), which

M

o= =x—
hAp

AF being the effeétive area of the flange.
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(a)

L &

Figure 7,

A

P

(b)

11
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If the angle of twist per unit length dsz 1is desired, .
it can be found by substituting (8) and (9) into formula
(4%)
1 Pdp P < dh )]
= =i + =— {1 + = (10)
240 [EAatN ty 24,

assuning Gg = G for both webs and denoting dy p the
perimetsr, or developed length, of the nose contour. --

From equation (9) it can be concluded that the shear
stress in the plane web becomes zeroc if P 1ig located at -

- .. 24
&= -5

which 1s the location of the shear center of the nose webd
alone. Vice versa, if P is located at the shear center
of the plane wedb, i.e., at the plane wed or & = 0, the
shear stress in the nose web becomes zero.

Although the section shown in figure 6 is the most
common exemple of the two—-flansge single-cell section, it
1s not the only one. Figure 7 shows another example, a
two—~spar box with three-point attachment. In this case,
the spar attached with a single bolt cannot act as a boam,
and the box might be termed a "rectangular D-section.!

Analysis of the D-Section by the Shear-Center Method

If the distance d& is chosen so that the angle of
twist 6 TYbecomes zero, the condition of bending without
torsion is obtained, and the distance d, thus found lo-

cates the shear center, or the elastic center, of the en-
tire section. Letting © = 0 in eguation (10),
a. = o —— AN (11)

A load P applied at &, will cause only bending, the
asgsoclated shear gtresses being

P : .
Togmy = = e . 12
NB Bty + Dby (122)
P o R
T = 2 (121b)

WB = h(hty + pby)
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4 load 'P - applied at = distance 4 ‘can be replaced by an
equal load P at 4, and a torque o

T = P(d - dg)

The shear stresses caused by the torque can be calculated
by equation (3) and added to the stresses given by equa=
tions (l2a) and (12b)., Obviously this method of analysis
using the shear center is much more laborious than the di-
rect method of analysis. . -

Example 6 in the appendix illustrates the analysis of
D-gsctions.

The Two-Cell Torsion Tube
Since a single-cell tube is sufficient to take tor-
slon, a two-cell tube (fig. 8) is statically indeterminate.
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In order to analyie it, imaginé the ﬁwd cells to be aplit
oven and unknown shears of the intensities g = X and
4dp = ¥ apvplied to the cells. One sguation for these two
unknowns is furnished by .the static equation stating that
the sum of the torques must be zero; using equation (6),

X x ZAa.+ Y x EAb + 7 =0 (13)

An ndditional equation ig obtained from the condition that
elastic continuilty must be preserved, namely, that the an-
g2le of twist of cell a relative to ¢cell B must bo zero,
or that the twist of cell a must equal that of cell ©b.

8, = 8y . (14)

using ocquation (4b), as

Expressing 06, and &y as functions of X and Y, by

S I ‘and 0, = —=- I
By = T ﬁa 5 de ‘and 8y $v 3 de

The second relation noeded to find X and Y ig obtalned
by equating these two expressions in conformance with (14).

If the angle of twist"is“deéired, it is found by sub-
stituting the values for X and T 1in the expression for
B, or for By,

Example 7 illustrates the numerical procedure.

The Two-~Flange Two~Cell Shell

The analygis of the two~flange two=cell shell 1in com~
bined bending and torsion (fig. 9(a)) is closely analogous
to the analysis of the two-cell torsion tube. Inmagine the
two cells to be split open (fig. 9(t)) and the shears of
intensities X and Y applied. The load P 1located at
d 1g replaced by a load P located in the pvlane of the
flanges and a torque Pd. The shear intensity in the shear
web is then

(15)

Fitg

=X - ¥ +

Bquations (13) and (14) are again uséd to find the shear
intensities X and Y, as in tho case of the torsion
tube; the only differonce between the two cases lics in

the appearance of the term P/h in the webd shear intonsity.
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It should be noted in figure 9(a) that there is only
a single polt attaching the auxiliary rear spar and that
the flanges of the rear spar are dotted, indicating that
they do not enter into the calculation.

Example 8 i;lustrates the énalysis of a two-~flange
two-cell shell. i o .

Analyvseis of the Two-Plange Two-Cell Shell
by the Shear-Center Method

The location of the shear center is found as before
from the condition that the angle of twist must be zero.
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EBEquating 65 and €3 each to zero, two squations are ob-

tained instead of the single eqguation (14). These two
equatiens together with (13) are sufficient to find the un-
known location dy at which P must be placed to produce
bending without torsion as well as the shear stresses asso-
clated with this special case of bending.

After the shear center has been found and the solu-~
tions for bending only and for torque only have been com-
Pleted, eny additional loading case to be investigated may
be broken up into a combination of bending only and tor-—
sion only, as discussed for the two-flansge, two-web shell.
The analysis of any given case then consists merely im
multiplying the stresses from the two basic solutions by
appropriate factors and adding them. This method regquires
less numerical work than setting up and solving equations
(13) and (14) for each case. Consequently, the shear-
center method of analysis saves time i1f a sufficlient num-
ber of cases are investigated, so. that the %total time
gaved on individual cases overbalances the time required
for finding the shear center and making the basic solutions.

It might be pointed cut that the same advantages can
be had by using any arbditrary-load case and the pure-
torsion case ag basic cases. If the arbitrary case chosen
as basic is for a load P, 1located at d,;, then a load

P, located at dp can be replaced by a load P; at &,
and a torque P (dz~d;). The analysis of additional cases

is therefore just as simple as if the shear-center method
had been used.

The shear—center method is illustrated by example 9.

The Three-Flange Single—Cell Shell

The single-cell shell with three flanges is of inter—
est as the practical example of a D~section capadble of
taking bending in any plane (fig. 10). This section cah
be easily analyzed for the general case of a section with-
out symmetry. The location of the resgultant shear in each
web is known from formula (7), and the equilibrant of the
locad P can be resolved into three forces alnng these
lines by statics. IFf the logd is parallel %*c ihe plane of
two flanges, the third flange is unstrcsscd, and tho ghear
intensity q 1is constent for the two webs joining the
third- flange. The analysis is then analogous to that of a
two-flange shell,
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Figure 10

., The Multiflange Single—~Cell Shell

The four-flange box (fig. 11) may be considered fraom
two points of view. If the upper cover is cubt, the lower
cover will also drop out of action. The structure is then
the familiar two-spar wing. This structure is statically
determinate (for vertical loads), btorsicn being taken carq
of by one spar bending down and the other one bending up. .
With the cover intact, the structure is statically inde-
terminate. '

In the commonly accepted shell theory, the torsion
taken by opposite bending of the spars is neglected. Tor-
sion isg assumed %o be adsorbed entirely by the four walls
acting together as a torsion tube. 4All flanges are assumed
to act as a unit, namely, a single beam obeying the engi-
neering theory of bending. The shell is then, in princi-
ple, analogous %o the D-section, comsisting of a combina-
tion of a torsion tube and a beam, and is statlcally deter—
minate. This conclusion remains valid if there are longi-
tudinals attached %0 the cover sheets. Each longitudinal
introduces one more unknown shear stress in the sheet and
also one additional equation of equilibrium of forces along
the =z axis. . ' L L

The Jjustification for wusing this theory in preference
to the one flrst mentioned lies in the fact that, for all-
metal stressed—skin wings, the torque taken by differen—
tiel bending of the spars is very small compared with that
taken by the torsion tube except near the root. In the
region of the root, corrections must be made to allow for
thig effect, as will be discussed later.
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Ar. Ao '.;L

oN
o

Figure 11.

As example, the equation for. the simple case of figure
11 will be developed.

IV: P+ S - 8 =0 | (a)
Z¥: =~Pd + Szh + Saw = O (v)
Sl SS
ZL on flange 1! 4F, + 5 dz - <~ dz =0 (c)
} S, S,
L on flange 2: d4F; + 4 dz -~ 3 dz = O (a)
4 3 (M P
How 7 B+ %) =5 () - &
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Since the stresses in the two flanges are assumed %o be
equal

o 4, e
i “rni % F7 LXK (e)
where . A=A, + A,
Substituting (e) into (c) and (4)
PA S S
i - R, f
Tt g = 0 _ ) (£)
PA, S, S
—2 3+ = o = =
T = =0 (g)
' PA,w
From (g) C Szh. = Spw - —f—
Substituting into (D) _
PA w
-Pd + Spw - it Spgw = O
Psa A '
5s =35 (o + 1 (16)
P sa A
si=3 G+ 1 -2) (17)
P A
S:3 = EE (d_ - W —Ag'> (18)

In the more general case of the trapezoidal box (fig. 12(a)),
the equationsg become ' .
h; = hg

EV: P+ 8 - S5 =~ S5 ~t——— =0

IM: P4 + Szh,! + Sgw = O

n
-

I

S 8, .
ZLy: 4F, + dz - o} dg = 0

B
=

[}

3 Sg
ZLg: 4Fy + w1 &z - - dz =0

In this case

dF, h, A aF, hgh

- 1 - 2
iz = 37 F end g33= =737 F
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so that

and finally

(19)

Substituting Sp into the preceding eguation gives §,,
and the first equation then yieclds §;.

T

\(b

(a)

Pigure 12.

If a number of stringers with a total cross—~sectional
area Az are uniformly distridbuted along the width of the

cover sheets (fig. 12(b)), the formula for S, becomes
[a hlh Ay . h, (hl+2h2).A3J

h, + ha i 12 1 (19a)

Sg = P ——E2—

Since the analysis of a given cage consigts merely in
substituting numerical values into equations (16), (17),
and (18), no examples will be given here. If examples aro
desired, they may be found in reference 3, which covers in
detall the analysis of~the four-flange box by the gheoar-
center method,
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Inagmuch as the multiflange single-cell shell is stat-

ically determinate,
determinate.

the multicell shell is stdtically in-
The méthod of analysis i1s analogous %o that

used for the two~flange, multicell shell and will be il-
lustrated by.the example of a four-flange, two~cell shell

(fig. 13(a)).

. =T e o =0
.hT. / i R
Y { Ty -1

Imagine each cell cut open and.
X and Y applied. The transverse
loads S, and §; in the ‘two-gpar

portional to the moments of inertia

shears of intensity
load P
webs,
of these spars

cauvses shear
which are pro-
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Iz

Ii ana Sa = P 2 (20)

S = P —=
1 I

with

I, = % Arhy® I = % Aghg® I =1, + I

The equations (4%) for angle of twist are written down,
and the condition of continuity

8a = Oy
furnishes one equatian. The second equation is found, as

before, from the static condition that the internal torque
must balance the external torqus.

Taking moments about 4,
~Pd + Sgw + 24,X + 24,¥ = O (21)

The analysis 1s closely analogous to the analysls of the
two-flange, two~cell goction previously discussed. The
only differsnce ig that the shear intensity 1in the resr

a
spar is now Y + E; ingtead of Y.

Example 10 illustrates the analysis of a four-—flange,
two-cell section by the direct methed., Example 11 illus-
trates the method of finding the shear ceaunter and the shear
stresses assoclated with bonding.

The procedurs for more complicatcd cascs (fig. 14) 1s
merely a simple extensgion of the procedure discussed, so
that no example will be required.

/0.—-—-————-
///// 93 02 ‘\ﬁ
S Gl C‘%l

Figure 14. - C e
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Corrections to Simple Thoories of
Bending and Torsion o

As mentioned before, the simple theories of bending
and of torsion used thus far may require corrections.
These corrections are important only in the inboard region
near the root, if they are important at all. Whenever they
are to be made, it is very advisable to separate bending
from torsion at the outset. Such a procedure will make
the calculations much clearer and will materially reduce
the danger of committing errors in sign. .

The flange material in box beams is usually distrib-
uted across the cover in the form of individuwal stringers
or corrugated sheet. The bending action of such beams
differs from that assumed by the simple theory of bending,
because the sheet deforms under the shear stresses imposed
on i%. The analysis of bending action under such circum-
stances is digcussed in reference 2 and no discussion will
be given here.

In tubes subjected $o torsion, the cross sections
usually have a tendency to warp out of their original
planes. If this warping is prevented by attaching the
tube to a rigid support, or by conditions of symmetry in
the middle of the span, then longitudinal (normal) stresses
will arige, and the shear stresses will be redistriduted.
Reference 4 gives a method of calculating the effects for
cross sections of arbitrary shape, but the method is of
limited usefulness. Methods of analyzing rectangular tubes
have been developed by o number of writers; the most im-
portant reports dealing with the methods are summarized in
reference 1, This reforence =lgoc gives what appears to be
the only published experimental data. They do not agree
very well with the theory; fortunately, the effects of end
restraint are small in most practical cases, so that they
need not be very accurately calculated.
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For a rectangular tube symmetrical about both axes,
such as shown in filgure 15, the normal forces on the cor-
ner flanges caused by complete restraint may be calculated
by the formula - e ’

A
X = #0.56 = (.P__ - _c_.)- __F (22)
ANy g RN
‘ v ty  be

(reference 1, equation (3¢) with G&/E = 0.4). The sizn of
the stresges ig determined from the rule that the walls
with the smaller ratio of width to thickness (in general,
the vertical walls) act like  independent spars, absordbing

tho torgque by bending in opposite directions.

Figure 15,

The effect of the end restraint on the shoar intensi-

ties 1s written most conveniontly in the form
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- S

ot
(¢

T
Aq_::i:-é'I (23)

c

—_—

o

S?F'éﬂd
+

obtained by using equations (3c). (9), and (10) of refer-
ence 1l; Ag 1s the correction to be applied to the shear
intensity calculated on the assumption of no restraint,
namely,

- T
q. - 2A. - [

The negative sign in (23) is used for the walls with the
larger ratio of width %o thickness, in gensral thes horil-
zontal walls. SR

In actual cases, the box will séldom be symmetrical
about both axes, as assumed in the derivation of formulas
(22) and (2%). The simplest procedure in such a case will
be to use average values for b, ¢, tb, and tc. This

procedure is somewhat unconservative, dut formulas (22)
and (2%) ars basically conservative because they assume
infinitely closely spaced bulkheads. Furthermore, except
in such cases as wings continuous across the center line
of the eirplane, the root scetion will not-be rigidly
built in, because there will be play in the fittings and
clastic yielding in the fittings and in the centor sec—
tion.

The simple procedure outiined herc and used in ex-—
ample 12 may, of coursc, be igsufficiont in some caseoss
a morc detailed treatment, however, is beyond the scope
of this papeor.

Langley Memorial Aeronautical Laboratory,
Wational Advisory Committoe for Aoronautics,
Langley Field, Va., January 20, 1939,
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A PPENDIZX

Example 1

Find the shear intensity and the shear center of the
section shown in figure 16 for a vertical load PF.

I =24%° =2 x+ x4 =2 in."
= AF = % - L 3n,3
Q@ = AX = z X 2 = 5 ine.

By formula (2), the shear intensgity is

qg = E'-—Zg(—-é = i— P l'b-./in.

In this gimple case, the correct direction of the arrow can
be found by inspection, and the sign convention is not needod.

The force H in the leg (fig. 16(b)) is

- - L - 3
H=gqw = i P x 3 = Y P
HX 4 =x X P x = 3 in.
or the location e of the shear center e=x+w=6 in. = 2w,
which agrees with formula (7).
t=.085 1 . - ~
$ A=fr : _ q .
—_ e
7 -0 O
f , ]
[ A 4
h=4 P
Y] O O
e
S wd3————4 e X ——e—— W
(a)
= e
(b)

Figure 16.
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Example 2

Find the shear intensity and the shear center for the
section shown in figure 17,

Bow's notation is used as indicatsd:

= i L - 4
I_2x4x4+2x4x4_41n.
= L = L
Q’a,c'. T4 X 2 2
= 1 L -
Qup = T X 2 + I X 2 =1
The shear intensities are therefore
_PExF _ 1 _Px 1 _1
Qe ~ 4 -8 P ap T 4 =z F _
The horizontal force H 1is
1 3
Héqa‘ch=.8PX3—8P

Taking moments about the lower left cormer of the channel
as before, -

Px = Fh = 2 P X 4 x = 2 4n,
8 2
- 3 - 1 = 3
e = 5 + 3 = 4 S in. = 5 w
t=.065
1 1
A= — A= = .
. 4 i 4 c .
Iy Q- q O [0 S I -,
b a

=4

(a) (b)
Figure 17,
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Exgmple 3

Find the shear intensities and the shear center of
the section shown in figure 18,

I =6 in.”*
_ .03 _ 1
Qg = % in. daq = B X 75 1b./in.
= 3 - L
Que = 1 in. Qye = P X 5 1b./1in.
. 1
RQap = 1% in.® Qpp = P X z 1b./1n.
. P P 3
B=gq_, X 1.5+ q  X1.5=g55%x1.5+gXx1.5=g P
- - 3 - 2P
Px = Eh = 5 P X 4 5
I
x = 35 in.
ag in the preceding case. The relation e = % w holds

for all channels, if the effective material is uniformly
distributed along the legs of the channel.

2
k)
.
o
0
o
Q

4—~ﬁ: O o b : e ——

(a) Figure 18.
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Example 4

691 29

Find the shear intengity and the shear center for the

section shown in figure 19.

=]
Q = ApR  in.®
A.FR P
= P —=—5 = ==~ 1b./in.
q 2hpR® " 2% /

Teking moments about the center
of the circle

Find the shear center of the section shown in flgure

P
Pe = ¢ X TR X R = 5% X mR X R
. TPR
2
e=gR in.
Example 5
20. In this case,
I = L ﬂRst in.4
2 4
6 . 2 3
Qg = f Rtd6XR cos 6=R t sin 8 in.
o
R®%t gin B 2 sin ©
= PX~— —— =P = =Z——= 1%/ in.
16 & mR & T R /

Taking moments about
the circle -

the center of

TF ..
Pe = f P 2 sin @ BRa6 X R
o T R
e = i R in.
'

A

all the sheet is effective in bending.

/i _
B

%

®
i

Figure 20,
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Example 6

Given the D-~socction
shown in figure 21, g ey

(o) By dircct analysis,

find thoe stresses in the
gection and the angle of
twist, assuming that no ¥ A
buckling occurs.

TRl

(p) Find the shear cen-
ter of the section, and
make the analysis by the
shear~center method.

ty=. 064~
(¢) Find the changes
caused by the flat sheet
developing a full diag-
onal-tension field. — > d=5 je—o

(a) Direct angly- . - Figure 21.
sis.~ Find first the lo- - '
cation e of the shear
center of the nose by
formula (7)

= 15.71 in.

i
N‘:l
(=]
]

Taking moments about the plane web

Sy ¥ 15.71 = P& = 5,000 x 5 25,000 in.-1d.

Sy = 1,591 1b.

which gives

Sy = 6,591 1b.

The shear stresses are therefore.

T - 1591
N 7 0,064 x 20

1,244 1b./sq.in,

- 6591
0.032.x 20

|t}

Ty 10,300 1b./sq.in.

The angle of twist is obtained from the basic formula (4v)
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1
B = 5h.G f Tds

= 1 [1,244 Xx ™ x 10 + 10,300 X 20]

2 x g X 100 G

L
G X 780

With G

4 X 106, this value becomes

§ = 195 X 107° . radian per inch length,

(b) Shear-center analysis.— In this simple case, the
location of the shear center can be found from formula (11)

2 X % X 100 x 0.064
dO = - - = - 8,80 in.
20 X 0,064 + m X 10 X 0.032 . .

In order to illustrate the procedure wused ip general cases,
the solution will be carried through gtarting from funda-
mental principles.

The load P is assumed to act at an unknown distance
4. There are then three unknowns: 7Tx, Ty, and d. To

find these unknowns, there are availlable the statlic equations
IV =0 and ZIM = 0 and the elastic egquation 8 = O,

2V=q_Nh-qwh+P=O

ZM (about the web) = gyhe - Pdy =0

_ 1 ax aw _ .
6 = 2h,G [tN X P+ oy X h] = 0 (by equation (4a))
Numerically

Qg X 20 = gy X 20 + 5,000 = O

gy X 20 x 15,71 - 5,000 4, = O

1 _th ' aw .
= . —_— X 2 =
8¢ = 3% 157.1:[0.064  m % 10+ 57553 é} o

These three equations are solved and yleld
qy = = 140.1 1b./in.; qg = 110.0 1b./in.
do = ~ 8.80 in (a)
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The shear intensities just obtained are those associated
with bending caused by a load P applied at the shear cen-
ter., The actual load 1s applied at 4 = 5, so that there
is a torgue ) -

T = -« 5,000 (5 + 8.80) = - 69,000 in,-1b.

giving a shear intensiity

= _.B2000__. . 219.8 ' b
¢ =% 157,11 T T (v)

The total shear. intensities are then

ay = - 140.1 + 219.8 = 79.7
and Ty = o.ggé = 1,245 1b,/sq.1in.

ay = 110.0 + 219.8 = 329.8
and Ty = 57%%; = 10,300 1b./sq.1in,

(c) Cheangeg cauged by buckling in flat web.~ When the
flat wed is allowed to.dugklo into a full diegonel-tension
field, the effective thickness becomes

ty = % £ =_% X 0.032 = 0,020 in.

In order to evaluate the angle of twist 6, it is necessary

to obtailn an effective shear stress

Tg = % T = g x 10,300 = 16,500 1b./sq.in,

Substituting thls value into the expression for 8

- e—— T + X 2

% x1,174 =-293.5 x 107 °
The changed location 4, of the elastic center is obtained

by substituting +, instead of % intoc formule (11)

radian psr inch

2 x g x 100 X 0.064 o C
20 X 0,064 + w X 10.x 0,020 . . }

1
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Example 7

Find the shear stregses and the angle of twist in the
torsion tube shown in figure 22. Assume Gy = G for all
walls.,

£=.020  $=.073

\ y

I e b teom T
Q” Pl -t=,051 7 ° —93
hy =24 A =3 9‘2 2 A,=990 ho=20
t=.030 .
1, |
! |
o~ 23 e 44 ] R —
(a)

It will be necessary tc set up expressions for the an-
gles of twist 8 in terms of the shear intensities X and
Y by using formula (4a). As & preliminary stop, the auxil-
iary parameters : -

a = [ Qf

will be computed, so that formula (4a) will be used in the
form

= i
GG_EAﬁ aq

4.
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Bow!s nota

(Note that

- W.,A.C.,A. Technical Hote No. 691

tion i1s used as indicated.

51

fac = T5p = £,550

By = 6%%?5 = 602.5

Bpe = o%osé = 585

8bf = Grogg = 11467

oy, = 6%%55 = 470
8yg = Bgy- )

The expressions for the angles of twist are

6

Equating

The equati

X

1
a® = 37% A, [X'X 8ge * (X = ¥) aab}
S {x x 2,550 + (X - Y) 470
T2 x 392 e
= 3.85 X - 0.800 Y .
= 347 [Yabd + Yay,, + Tage + (Y = X) ay,
1
= —m—— . + (Y-X
53555 [Y><502,5l-Y><5554-Y'x1,467 (Y-X) 470}
= 1,562 ¥ -~ 0.2378 X
Ga = 84, obtain

4.088 X = 2.162 ¥ (a)
on of moment equilibrium (13) is

X 2 X 392 + ¥ X 2 X 990 -~ 250,000 = O (v)



The solutlion of these two equations is
X = 55.3 1b./in. Y = 104.5 1b./in.

The shear stresses are therefore

Toe = % = -555—6—3-5 = 2,765 iﬁ./aq.in.
Tog = % = %%%;% = 1,431 1b./sg.in,
Tpe = % = %%%52 = 2,900 1b./sq.in.
Top = % = %%%E% = 3,480 1%./sq.in.
Top = §_§_I = - o%g'i = - 965 1b./sq.in.

The angle of twist is obitained by substituting into
expression for Ga ’

B =6, = & fz 85 X ~ 0.600 t] -1 x 150.2
b—1 a' — G L ) L ] J — G -

With G = 4 x 10° +this value becomes

8 = 37,6 x 10°° radian per inch lensgth,

BB

the
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Example 8

Pind the shear stresses in. the section shown in fig-
ure 23. Thig section is identical wilith the one used in
example 7, except that two flanges have been added to take
care of beam action.

A P=5,000

s 3=2
A1=1;85

(a)

(b)
. Figure 23,

The parameters a can be taken from the preceding
example.

The shear intensity caused by the load P acting on
the shear wed is

The exvresslons for 6 are now written exactly as in ex-
ample 7 except for the addition of ay *
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-
i _ : . _
8% 2x392 LX X 2,550 + (X - ¥ + 208.2) X 470]

= 3.8 X ~ 0.600 Y + 124.986

858

— . . . e + § -X~ . x P
57535 [Yx602 5.+ ¥x555 + Tx1467 + (¥-X-208.2) 470]
= 1,562 Y - 0.2376 X - 49.5

Bquating GaG to. 684G gives

4,088 X -~ 2,162 Y + 174,48 = 0 (a)

The ecuation of moment equilibrium is taken around the
shear web, to eliminate one term-

X x 2 X 392 + ¥ x 2 %.990 - 5,000 x 46 = O - {Dp)
Solving eguations (a) and (b), obtain
. X = 15.5 Y = 110.1

The shear stresses are therefore

Tao = 6%%5% = 775 ;p./sq.ig. o
Tpg = é%g;é = 1,510 1%./sq.in. —

Tpe = %%%E% = 3,060 1b./sq.in.

Toe = %%%%% = 3,670'1b./sq.in. -
Ty = 2Bed= é%gé% + 208.2 _ o 226 lb./sq.in.¥

Example 9

For the section used in'example g: find the shear
center, and analyse the load case of example 8 by the shear-
center method.

Two equations are obtained by equating to zero the ex-~

pressions for Ba and 6,/ which are taken from example
8.
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3.85 X - 0,600 Y + 124,96

0
~0.2376 X + 1.562 Y ~ 49,5 =0

The solution of these equations gives the shear intensi-
ties associated with torsion~free bending., '

X = «28.2 1b./in., Y = 27.42 1b./in.

The distance do of the shear center from the shear web
le obtained by writing IM about the shear web

~5,000 d - 28.2 X 2 X 392 + 27.42 X 2.X 990 = 0

d.o = 6-44 inv

A load P 1located at d = 46 inches: will therefors cause
a torque

~P(& - d4,) = -5,000(46 - 6.,44) = -197,800 in.-1b.

The stresses 73 due to bending are obtained from X gand
Y as before, ' l

The strosses T due to the tofque of -197,800 in.-1b.

are obtained by multiplying the stresses from example 7 by

197800 - ¢o,791.
250000

The finel stresses T are obtained by supervosition as
shown in the following table.

Wall E | T T
(1b./sq.in,) (1v./sq.in.) (1b./sq,in.)
ac -1,410 2,190 780
bd 376 1,132 1,508
be 762 2.297 3,059
bf 914 ’ 2,757 3,671
adb 2,990 - ~764 2,226
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Example 10

For the section shown in figure 24, find the shear
stresses. The gectlon is identical with that shown in
figure 22 except for the flanges. The load is assumed
be perpendicular to the neutral axig, The inclimation
the shear webs is neglected. ' :

AlP=5JXE

(b)
Figure 24. -

39

to
of

Imagine the cover %o be slotted in both cells as in-
dicated, leaving a structurc consisting of two spars.
is divided between these two spars in the
moments of lnertia.

vertical shear
ratio of their

Ill

Ig'

I}

2
-3
2
I

1

X 1.85 x 242

533 in.*

'x 1.65 x 202 = 330 in.*

1 + Ig

863 in.*

The
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Therefore

Iy 533
S, =P X.—f— = 5,000 X 383 = 3,090 1b.
S 309 : :
¢, = Ei = —EZQ = 128.8 1b./in.
1 .
Iz 330
SB = P X —I—- = 5,000 X -égg = 1,910 1b,
S
dgq = Eg- = -1-—9%9 = 95,5 1'b./in.
2

Procoeding as in the previous cases, write the expressions
for 65 and 6y,

1 .
SO S - + 128.
8, 5555 [2,550 X + 470 (X - T + 128 8)]
= 3,85 X ~ 0,600 ¥ + 77.3 _ )
1 T4 “be > di s % g !
8y = 33550 [602.5 Y+ 555(Y+95.5) + 1,467 Y+ 470(Y—X~128.8)]
L

= 1.562 ¥ -~ 0.2376 X ~ 3.8
Equating 6, to 6y, obtain
4,09 X ~ 2,162 ¥ + 8l.1 = 0
The equation of moment equilib&ium glves
~5,000 X 46 + 1,910 %X 44 + 2 x 392 X + 2 X 990 X ¥ = O
Solving these two eguations, obdtain
X = 15.9 1b./in. Y = 67.5 1b./1in.

The shear stresses are therefore

T = £

: «/sq.in,
ac = 5ocsg = 795 1b./sq.in

it

Y
T = ——t——
bd 0.073

[}

925 1b./sq.in.
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.Y+q . ' . i -
T - 2 _
be = 57036 4,530 lb./sqiin.
- X ..
Tve = 5ToEs 2,;50_1b./§q.in.
X-."'ql-"i'- o
Tab = TT5T65I = },513 1b./sq.in.

Exgmple 11

Find the shear center, and the shear stresses assodi-
ated with torsion—-free bending, for the sectlion shown in
figure 24.

Take the sxpregsions for Ga and 6y from the pre~
ceding example and equate each onse 'to zero. '

3.85 X ~ 0.600 Y + 77.3 5.0

~0.2376 X + 1,562 Y - 3,8 .= 0
.Sglviﬁg . .

X = -20.2°1b./1in. Y = <0.635 1b./in.

The shear stresses are therefors

. ’ . . -20.2

Tre e Mo = = 222 o 010 1b./84-i?-'h
Tpg = = 22885 < _9 1v./sq.1n. ’ _
Tbei= _0.53?02695.5 - a‘ééplib'/sq;in' _
Tpe = :%f%%% = =21 1v./sq.in. - LT
Lo "_Tab _ =20.2 + é?géi + 0.635 . 2,140 1b./sq.in.

Leaving the location.’ 4 of the load P wundetermined,
write the moment equation :

LM = -5,0004 + 1,910x44 - 2x332x20.2 - 2X990%X0.635 = O

"Wy

{
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which gives as location of the shear center

d = 13.39 in, behind front shear webd

Example 12

For the section analyzed in examples 10 and 11, find
the stresses if the section is a root section that is rig-
idly built in. The length L of the beam is 200 inches;
the load P 1ig applied at the tip.

The first step is to separate the load on the entire
section into bending moment and torque. The bending mo~
ment is

M =PL = 5,000 x 200 = 1,000,000 in.-1D.

According to example 9, the shear center 1is located at
d, = 6.44 inches, and the torque is

T = P(d —'do) = «-197,800 in.-1b. .

The effects of restraint against warping will be calcu-
lated under the assumption that only the approximately
rectangular cell b between the four main fittings is re-
strained against warping and that the nose part has no
influence on these warping stresses.

According to example 7, a torque of 250,000 1ln.~1d.
creates & sheoar intensity Y = 104.5 1b./in. in coll ©b.
The eoxisting torque of 187,800 in.-~1lb. will thorefore give
g8 shoar intonsity

197800 :
= - ) e enaisna = 2 L) l ] i L[]
ay 104.5 -X Sposos 82.8 '1b /in

The torque carried by cell b .ia therefore (epproximately)
Ty = 82,8 X 2 x 990 = 164,000 in.~1b.

With the average values

b = 44 1in. b, = 2:078 1+ 0.080 - 0,0515 in,

c = 22120 _ 9o 4n, g, = 2:051 1 02088 - 0,0435 in.
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Ay = 185 £ 1.68 - 1,75 sq.in.

The normal force on the flange due to torgue becomes, dy
formula (22)

X = 56 164000 55 —506 f 175 - 3 iQO l-'D.
O 44 X% (8 ) 855 -+ 506 !

end the correction for shear 1ntensity becomes, by formula
(23)

Aq = _ 164000 (855 - 506)- = 21.75 1b./in.
2 x 44 x 22 (855 + 506)

~

The bending stresses due to the bending moment are, in the
front flanges,

oyp = % 1900323 x 12 _ +1%,900 1b./sq.in.

and, in the resar flanges,

= + 000000 X 10 - +317 580 1b./sq.in.
Oon 863 : 90 ¢ : /sa

the upper sign applying to the upper flange in each case,
THe Dbending stresses dus to torque are

= X - 1190 _ a4z 17 3
Cip T i % Toas < 643 1b./sqg.in.
and SR :
= X - 1190 :
Top = i = T7¢8 = £721 1b./sq.in.

the upper sign applylng %o the upper flanges. The final
strosses are therefore. : T -

"1y = =13,900 + 643 = 913,257-1b3/sq,ina

13,900 - 643 = 13,257 1b./sq.in.

Q

i__l

|
1

O,y = =11,580 - 721 = -12,301 1b./sq.in,

0oy = 11,580 + 721 = 12,301 ib./sq.in.
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The shear stresses for the section free to warp are ob-
teined from exanmnple 10. Superposing the correctlons

A
At = ?g glves the final shear stresges

Tae = 795 + 0 = 795 1b./sq.in.

Tpa = 925 - 3%532 = 627 1b./sq.in.

Tpe = 4,530 +_%%6%% = 5,134 1b./sq.in.
21.75

|
|

Tpe = 2,250 = 1,525 1b./sq.in.

o
n .

Q

-
-~ (&}

Tpg = =1,513 + 0%6 i = ~1,087 1b./sq.in.

91}

The corrections influence the design of the rear spar more
eritically than the front spvar. The correction on the
flange stress is somewhat over 6 percent; on the web shear
stregs, it is somowhat over 13 percent. A&n srror of 25
percent on tho correction would thorefore causc an error
of 1~1/2 percent on the flange stress and an error of &
percent on tho web shear stress.
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